Neurotoxins include, in the most general sense, all molecules that destroy or inhibit the proper functioning of the nervous system. Neurotoxins from animals and plants include alkaloids and peptides, many of which interact with physiological processes in a selective manner. The majority of neurotoxins disrupt the transmission of signals in the nervous system by interfering with synaptic transmission. Neurotoxins can act presynaptically to inhibit the release, uptake and recycling of neurotransmitters or postsynaptically, binding to receptors on the postsynaptic membrane and preventing their activation by neurotransmitters. A class of neurotoxins from plants and animals interact with nicotinic acetylcholine receptors, either at the neuromuscular junction, peripherally at neuronal ganglia or centrally, to produce neurotoxic effects. In this article we review current knowledge of some of these neurotoxins, their structure, pharmacology, importance as pharmaceutical tools as well as future prospects for the development of therapeutic molecules.