Antibody specificity is determined by structural v-genes that code for the amino acid sequences of the variable regions of antibody polypeptide chains. The present hypothesis proposes that the germ-cells of an animal carry a set of v-genes determining the combining sites of antibodies directed against a complete set of a certain class of histocompatibility antcgens of the species to which this animal belongs. The evolutionary development of this set of v-genes in phylogeny is traced back to the requirements for cell to cell recognition in all metazoa. The hypothesis leads to a distinction between two populations of antigen-sensitive cells. One population consists of cells forming antibodies against foreign antigens; these lymphocytes have arisen as mutants in clones descending from lymphocytic stem cells which expressed v-genes belonging to the subset (subset S) coding for antibody against histocompatibility antigens that the individual happens to possess. The other population consists of allograft rejecting lymphocytes that express v-genes of the remaining subset (subset A) coding for antibody against histocompatibility antigens of the species that the individual does not possess. The primary lymphoid organs are viewed as mutant-breeding organs. In these organs (e. g. in the thymus), the proliferation of lymphocytes expressing the v-genes of subset S and the subsequent suppression of the cells of these "forbidden" clones, leads t o the selection of mutant cells expressing v-genes that have been modified by spontaneous random somatic mutation. This process generates self-tolerance as well as a diverse population of antigen-sensitive cells that reflects antibody diversity.The proliferation in the primary lymphoid organs of lymphocytes expressing v-genes of subset A generates the antigen-sensitive cell population that is responsible for allo-aggression.The theory explains how a functional immune system can develop through a selection pressure exerted by self-antigens, starting during a period in early ontogeny that precedes clonal selection by foreign antigens. The hypothesis provides explanations for the variability of the N-terminal regions of antibody polypeptide chains, for the dominant genetic control of specific immune responsiveness by histocompatibility alleles, for the relative preponderance of antigen-sensitive cells directed against allogeneic histocompatibility antigens, for antibody-idiotypes, for allelic exclusion, for the precommitment of any given antigen-sensitive lymphocyte to form antibodies of only one molecular species and for the cellular dynamics in the primary lymphoid tissues.