The frequency, temperature, and hydrostatic pressure dependences of the dielectric properties, molecular relaxations, and phase transitions in PVDF and a copolymer with a 30 mol% trifluoroethylene were investigated. The β‐relaxation peak temperature Tβ and the melting temperature Tm of both polymers, and the ferroelectric transition temperature Tc of the copolymer, are strong increasing functions of pressure. The magnitudes of the pressure derivatives of Tβ, Tc, and Tm increase in the order of the “transition” temperatures, i.e., Tβ(P) < Tc(P) < Tm(P). These results can be qualitatively understood in terms of the nature of the molecular motion and/or reorientation processes involved. The results on the copolymer suggest that pressure should induce a ferroelectric‐paraelectric transition in PVDF below Tm, but such a transition was not observed over the limited pressure range of the present experiments. The relaxational dynamic (not static) nature of the melting process in these materials is indicated by the observed dependence of Tm on probe frequency. The frequency (or rate) and strong pressure dependences of Tm of PVDF provide a rational explanation for why it is possible to use this polymer as a piezoelectric shock‐wave gauge to relatively high shock pressures and the accompanying high temperatures.