This study provides gas-phase S excited-state geometries along with emission and adiabatic energies for methylated/demethylated and ring-locked analogues of protonated Schiff base retinal models comprising system of five conjugated double bonds (PSB5), using second order multiconfiguration perturbation theory (CASPT2). CASPT2 results serve as reference data to assess the performance of CC2 (second-order approximate coupled cluster singles and doubles) and a commonly used CASSCF/CASPT2 protocol, that is, complete active space self-consistent field (CASSCF) geometry optimization followed by CASPT2 energy calculation. We find that the CASSCF methodology fails to locate planar S minimum energy structures for four out of five investigated planar models in contrast to CC2 and CASPT2 methods. However, for those which were found: one planar and two twisted minima, there is an excellent agreement between CASSCF and CASPT2 results in terms of geometrical parameters, one-electron properties, as well as emission and adiabatic energies. CC2 performs well for in-plane S minima and their spectroscopic and electronic properties. However, this picture deteriorates for twisted minima. As expected, the CC2 description of the S electronic state, with strong multireference and significant double excitation character, is very poor, exhibiting errors in transition energies exceeding 1 eV. They may be substantially diminished by recalculating transition energies with CASPT2 method. Our work shows that CASSCF/CASPT2 and CC2 shortcomings may influence gas-phase retinal analogues' excited state description in a dramatic way. © 2017 Wiley Periodicals, Inc.