The hybrid molecular–continuum model for polar solvation considered in this paper combines the dielectric continuum approximation for treating fast electronic (inertialess) polarization effects and a molecular dynamics (MD) simulation for the slow (inertial) polarization component, including orientational and translational solvent modes. The inertial polarization is generated by average charge distributions of solvent particles, composed of permanent and induced (electronic) components. MD simulations are performed in a manner consistent with the choice of solvent and solute charges such that all electrostatic interactions are scaled by the factor 1/ε∞, where ε∞ is the optical dielectric permittivity. This approach yields an ensemble of equilibrium solvent configurations adjusted to the electric field created by a charged or strongly polar solute. The electrostatic solvent response field is found as the solution of the Poisson equation including both solute and explicit solvent charges, with accurate account of electrostatic boundary conditions at the surfaces separating spatial regions with different dielectric permittivities. Both equilibrium and nonequilibrium solvation effects can be studied by means of this model, and their inertial and inertialess contributions are naturally separated. The methodology for computation of charge transfer reorganization energies is developed and applied to a model two-site dipolar system in the SPC water solvent. Three types of charge transfer reactions are considered. The standard linear-response approach yields high accuracy for each particular reaction, but proves to be significantly in error when reorganization energies of different reactions were compared. This result has a purely molecular origin and is absent within a conventional continuum solvent model.
The isomerization of the 11-cis isomer (PSB11) of the retinal chromophore to its all-trans isomer (PSBT) is examined. Optimized structures on both the ground state and the excited state are calculated, and the dependence on torsional angles in the carbon chain is investigated. Time-dependent density functional theory is used to produce excitation energies and the excited-state surface. To avoid problems with the description of excited states that can arise with standard DFT methods, the CAM-B3LYP functional was used. Comparing CAM-B3LYP with B3LYP results indicates that the former is significantly more accurate, as a consequence of which detailed cross sections of the retinal excited-state surface are obtained.
We present calculations for various properties of the ground and excited states of several arylamine-substituted acridinium ion systems that have been studied experimentally. Using ab initio and semiempirical quantum mechanical methods together with the generalized Mulliken-Hush (GMH) model, we examine the excitation energies, dipole moment shifts, and electronic coupling elements for the vertical charge shift (CSh) processes in these systems. We also examine solvent effects on these properties using a dielectric continuum reaction field model. The results are in generally good agreement with available experimental results and indicate that there is strong electronic coupling in these systems over a wide range of torsional angles. Nevetheless, the initial and final cationic states remain reasonably well-localized over this range, and thus TICT state formation is unlikely in these systems. Finally, a version of the GMH model based on Koopmans' Theorem is developed and found to yield coupling elements generally within a factor of 2 of the many-electron GMH for a sample acridinium system, but with overestimated adiabatic and diabatic dipole moment differences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.