“…Predicting the thickness of QLL always faces challenges especially when the phase transition from water to ice is beyond the bulk freezing. A pertinent example is the freezing of the water confined in thin pores, which can be influenced by many factors such as the geometry confinement that regulates the crystal anisotropy, the curvature effect that depresses the freezing temperature, and the actions of the pore walls on the pore fluid [1,3,11,[14][15][16][17]. Indeed, in chemical, environmental, and civil engineering, the confined freezing is more frequently quoted because almost all materials (except pure metals and crystals) are, more or less, in porous structures, and the phase transition of the water confined in the pores may occur in certain conditions during freezing [3,18].…”