Oxynitridation of Ge surfaces by nitric oxide (NO) is an important method to synthesize the gate dielectric for Ge-based microelectronics. Understanding the atomic processes of NO oxynitridation on Ge(100) is highly desirable to improve the N incorporation efficiency. Adsorption and dissociation of NO on Ge(100) were investigated on periodic models using DFT calculations. The nondissociative precursors can transform into various dissociative products, resulting in lowering the system energy as well as increasing the coordination numbers of N and O atoms. The transition state search shows that both monomeric and dimeric dissociative pathways are possible. The interdimer route for monomeric dissociation is unfavorable at low temperatures due to the relatively large barriers. In contrast, the intradimer dissociation is preferable due to the existence of an intermediate state, in which the N−O bond is significantly weakened. When a high concentration of NO molecules is adsorbed on Ge(100), three dimeric adsorption structures with two O atoms attached on surfaces are thermodynamically and kinetically favorable to form but difficult to dissociate even at room temperature. Their further release of N 2 at elevated temperatures would deteriorate the nitrogen incorporation ratio. Our results are useful for optimizing the oxynitridation of Ge(100) by nitric oxide.