Tomato is one of the most consumed fruit vegetables globally and is a high dietary source of minerals, fiber, carotenoids, and vitamin C. The tomato is also well known for its nutraceutical chemical content which strengthens human immune systems and is protective against infectious and degenerative diseases. For this reason, there has been recent emphasis on breeding new tomato cultivars with nutraceutical value. Most of the modern tomato cultivars are F1 hybrids, and many of the characteristics associated with fruit quality have additive gene action; so, in theory, inbred vigor could reach hybrid vigor. A sum of 20 recombinant lines was released from the commercial single-cross hybrids Iron, Sahara, Formula, and Elpida, through a breeding process. Those recombinant lines were evaluated during spring–summer 2015 under organic farming conditions in a randomized complete block design (RCBD) experimental design with three replications. A sum of eleven qualitative characteristics of the fruit was recorded on an individual plant basis. Results from this study indicated that the simultaneous selection of individual tomato plants, both in terms of their high yield and desired fruit quality characteristics, can lead to highly productive recombinant lines with integrated quality characteristics. So, inbred vigor can reach and even surpass hybrid vigor. The response to selection for all characteristics evaluated shows additive gene action of all characteristics measured. These recombinant lines can fulfill this role as alternatives to hybrid cultivars and those that possess high nutritional values to function as functional-protective food.