This study examined the physical properties of kenaf fiber-imbedded nonwoven for automotive pillar trim according to the blend ratio of the fibers and needle-punching process conditions. Kenaf-imbedded nonwoven specimens mixed with polypropylene (PP) and low-melt PET (LM PET) fibers were prepared via needle-punching, and their physical properties such as air permeability, water absorption, sound absorption coefficient, and porosity were investigated according to the various processing conditions. The kenaf-imbedded nonwoven treated with high needle depth in the needle-punching process and/or mixed with a large amount of LM PET exhibited the highest breaking and tearing strengths, due to the high weight of the nonwoven specimens. A high blend percentage of LM PET fibers reduced the pore size, which resulted in low air permeability and water absorption. The sound absorption coefficient of the kenaf-imbedded nonwoven specimens was highly dependent on its weight and thickness. Regarding the lamination treatment, the laminated nonwoven exhibited higher breaking and tearing strengths, thermal conductivity, and sound absorption coefficient than the non-treated one. In addition, the HDPE powder-treated nonwoven exhibited lower breaking and tearing strengths, air permeability, water absorption, and sound absorption, due to the reduced pore size.