Background Medical devices made of polydioxanone (a synthetic biodegradable polymer) have been available since the early 1980s. However, no review regarding their performance and safety has been published. Objective This systematic review intends to review and assess commercially available polydioxanone implants and their safety and performance in patients. Methods We searched for approved polydioxanone implants in several Food and Drug Administration databases. Then, we performed a literature search for publications and clinical trials where polydioxanone devices were implanted in patients. This search was performed on MEDLINE, Embase, Scopus and other databases. Safety and performance of polydioxanone implants in patients were assessed and compared with the implantation of non-polydioxanone devices, when possible, based on scoring systems developed by the authors that analyse surgical site infection rates, inflammatory reaction rates, foreign body response, postoperative pain and fever. Results Food and Drug Administration databases search revealed that 48 implants have been approved since 1981, with 1294 adverse reactions or product malfunction in the last decade and 16 recalls. A total of 49 clinical trials and 104 scientific publications were found. Polydioxanone sutures and meshes/plates had low rates of surgical site infection, inflammatory reaction, foreign body response and postoperative fever. Polydioxanone clips/staples reported high rates of surgical site infection, postoperative fever and pain, with sub-optimal clinical performance and poor safety rates. The remaining implants identified showed high levels of safety and performance. Safety scores of polydioxanone implants and non-polydioxanone alternatives are similar. Polydioxanone monofilament sutures perform better than non-polydioxanone alternatives but performance did not differ with remaining polydioxanone implant types. Conclusions Although polydioxanone clips/staples should be implanted with caution and monitored carefully, in general, safety and performance scores of other polydioxanone implants did not differ from non-polydioxanone alternatives. This review will be a useful reference for researchers and industries developing new polydioxanone medical devices.
Today's sutures are the result of a 4000-year innovation process with regard to their materials and manufacturing techniques, yet little has been done to enhance the therapeutic value of the suture itself. In this review, we explore the historical development, regulatory database and clinical literature of sutures to gain a fuller picture of suture advances to date. First, we examine historical shifts in suture manufacturing companies and review suture regulatory databases to understand the forces driving suture development. Second, we gather the existing clinical evidence of suture efficacy from reviewing the clinical literature and the Food and Drug Administration database in order to identify to what extent sutures have been clinically evaluated and the key clinical areas that would benefit from improved suture materials. Finally, we apply tissue engineering and regenerative medicine design hypotheses to suture materials to identify routes by which bioactive sutures can be designed and passed through regulatory hurdles, to improve surgical outcomes. Our review of the clinical literature revealed that many of the sutures currently in use have been available for decades, yet have never been clinically evaluated. Since suture design and development is industry driven, incremental modifications have allowed for a steady outflow of products while maintaining a safe regulatory position and limiting costs. Until recently, there has been little academic interest in suture development, however the rise of regenerative medicine strategies is shifting the suture paradigm from an inert material, which mechanically approximates tissue, to a bioactive material, which also actively promotes cell-directed repair and a positive healing response. These materials hold significant therapeutic potential, but could be associated with an increased regulatory burden, cost, and clinical evaluation compared with current devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.