In the present work, experimental trials were conducted with Ti–6Al–4V sheet. The influence of process parameters on the weld bead geometry of bead on joint welding and butt joint configuration was studied. It was concluded that at high current and low travel speed, the heat input was found to be maximum. This led to a higher linear heat input over the base metal that subsequently yielded a full depth of penetration. The strength and integrity of the welded butt joint configuration were ascertained by tensile and bend tests. The microhardness values of the fusion and heat-affected zones were concluded to be higher compared to the base metal. In addition, an Erichsen cupping test ensured that the formability of the welded specimen was comparable to that of the base metal.