Metallic films are used to improve optical, chemical, mechanical, magnetic, and electrical properties and are therefore of high importance in many applications, from electronics and catalysis, environmental protection and health, to wearable and flexible electronic materials.Many of these applications, however, require that the metal films are deposited uniformly on topographically complex surfaces and structures. Some form of chemical vapor deposition (CVD) where the deposition is governed by the surface chemistry is needed for uniform film deposition on topographically complex surfaces. Furthermore, area selective deposition (ASD) has gained large considerations lately, where films deposited only on specified areas of the substrate, and not on others, simplifies the processing significantly and opens the way for less complex fabrication of, for instance, nanoscaled electronics. ASD occurs when the surface chemical reactions are disabled on selected areas of the substrate. Since the metal centers in CVD precursor molecules typically have a positive valence, a reductive surface chemistry is required to form a metallic film. This is usually done by using a second precursor, i.e., a molecular reducing agent. The negative standard reduction potential of the first-row transition metals (Ti, V, Cr, Mn, Fe, Co, and Ni) means that CVD of these metals requires either very high temperatures or very powerful molecular reducing agents. This thesis describes a new low X XI
List of Articles