The accumulation and distribution of proteolipid proteins in rat brain and selected brain regions (cerebellum, cerebral cortex, basal ganglia, and hippocampus) were studied during early postnatal development. In whole brain an eightfold increase of proteolipid was observed between ten and 33 days after birth. This was reflected in the separate regions examined where the proteolipid protein content increased six- to ten-fold during the same period. The basal ganglia and cerebral cortex contributed the greatest amount to the total proteolipid present. However, at 28-33 days the greatest concentration (mg/g tissue) was observed in the basal ganglia and hippocampus. When the proteolipid protein preparations were examined by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, distinctive, heterogeneous patterns for each brain region were obtained. Proteolipid from basal ganglia (the region richest in white matter) consisted primarily of two major protein bands with apparent molecular weights of approximately 21,500 and 26,000. Both of these bands dramatically increased in quantity during myelination, and the larger protein coelectrophoresed with isolated myelin proteolipid protein. Both bands were also found present in proteolipid preparations from the other brain regions but in varying amounts relative to the total. The data suggest that the increase in proteolipid observed during this developmental period was due in large measure to the accumulation of myelin-specific proteolipids, but also that a significant proportion of the increase was due to the accumulation of nonmyelin components.