Several conflicting models have been proposed for the membrane arrangement of the major myelin proteolipid (PLP). We have compared features of the sequence of PLP with those of other eukaryotic integral membrane proteins, with the view of identifying the most likely transmembrane topology. A new, simple model is suggested, which features four hydrophobic alpha-helices spanning the whole thickness of the lipid bilayer. Its orientation may be such that both the N- and C-termini face the cytosol. None of the biochemical, biophysical or immunological experiments hitherto reported provides incontrovertible evidence against the model. The effect or absence thereof of various PLP mutations is discussed in the frame of the proposed 4-helix topology.
A cDNA library from rat brain was constructed in pBR322 and screened with a 14-mer mixed oligonucleotide probe based on residues 231-235 of bovine proteolipid (PLP). A positive clone was isolated: it contained a 1334-base-pair cDNA insert and was subjected to DNA sequence analysis. The cDNA encoded information for the 276 amino acids of rat PLP. Comparison with bovine PLP sequence showed a complete amino acid sequence homology except for 4 amino acid residues.
Rat brain Myelin ProteolipidOligonucleotiak probe cDNA sequence
Three different calmodulin genes that encode the identical protein have been identified in the rat (Nojima, 1989); however, calmodulin gene expression at the various stages of tissue differentiation and maturation has not been previously determined. We have quantitated the content of mRNAs encoding calmodulin in the developing brain and skeletal muscle using RNA blot analysis with three specific cDNA probes. Our results show that five species of calmodulin mRNAs: 4.0 and 1.7 kb for CaM I, 1.4 kb for CaM II, and 2.3 and 0.8 kb for CaM III are detectable at all ages in the brain as well as in skeletal muscle but exhibit a tissue-specific developmental pattern of expression. The comparison of the temporal pattern of calmodulin gene expression with both mitotic activity, as demonstrated by cyclin A mRNA levels, and differentiation and maturation of specific brain or muscle regions is consistent with calmodulin involvement in development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.