Clad composites have emerged as a suitable choice to augment the industrial needs due to having a combination of different properties. The accurate cutting is challenging due to the heterogeneous nature of the composite. Conventionally, thermal cutting (plasma/gas) techniques are commonly employed which provide poor cut quality, deeper heat affected zones and demand additional finishing operations. Therefore, this research evaluates the potential of abrasive water jet cutting (AWJC) as a proficient substitute for the cutting of stainless-clad-steel composite in terms of surface quality. However, it is difficult to produce a similar level of surface finish at both the layers because the constituent layers have different mechanical properties. The effect and significance of four important AWJC parameters on cut quality are examined through statistical analyses. Optical and scanning electron microscopic analyses are further provided as evidence of the reported results. Optimal settings are also developed using a weighted signal-to-noise ratio technique which can provide minimal roughness at each layer. Moreover, using the optimal settings, a similar level of surface finish has been achieved for both the layers with a difference of just 0.03 µm between the constituent layers.