Variable magnetic field Hall and transient photoconductance lifetime measurements were performed on a series of undoped, In-doped, and As-doped HgCdTe samples grown by molecular beam epitaxy and metalorganic chemical vapor deposition. Temperature variation and, in the case of Hall, magnetic-field variation are needed to give a more complete picture of the mechanisms that control lifetimes in HgCdTe samples. Recent predictions of recombination lifetimes from full band structure calculations were compared to experimental lifetimes at various doping levels at long-wave infrared (LWIR) and mid-wave infrared (MWIR) compositions. For n-type material, lifetimes from low doping levels fall well below the predictions, implying that Shockley-Read-Hall (SRH) recombination is still dominant. MWIR samples have a lifetime that increases somewhat with carrier concentration, suggesting that In doping passivates the SRH defects for that composition. Lifetimes in p-type MWIR material appear to be well-explained by recent theoretical calculations. In p-type material, trapping states may be introduced during the incorporation and activation of As, since some samples with unusually long lifetimes had a distinctly different type of temperature dependence.