Purpose
– The purpose of this paper is to predict the bagging recovery velocity of bagged denim fabric samples. Hence, the authors attempt to carry out a model highlighting and explaining the impact of some considered frictional parameters such as yarn-to-yarn friction expressed as weft yarn rigidity parameter and metal-to-fabric friction expressed by mean frictional coefficient parameter.
Design/methodology/approach
– The statistical analysis steps were implemented using experimental design type Taguchi and thanks to Minitab 14 software. The modeling methodology analyzed in this paper deals with the linear regression method application and analysis. The predictive power of the obtained model is evaluated by comparing the estimated recovery velocity (theoretical) with the actual values. These comparative values are measured after the bagging test and during the relaxation time of the denim fabric samples. The regression coefficient (R2) values as well as the statistical tests (p-values, analysis of variance results) were investigated, discussed and analyzed to improve the findings.
Findings
– According to the statistical results given by Taguchi analysis findings, the regression model is very significant (p-regression=0.04 and R2=97 percent) which explains widely the possibility of bagging behavior prediction in the studied experimental field of interest. Indeed the variation (the increase or the decrease) of the frictional input parameters values caused, as a result, the variation of the whole appearance and the shape of the bagged zone expressed by the residual bagging height variations. In spite of their similar compositions and characteristics, the woven bagged fabrics presented differently behaviors in terms of the bagging recovery and kinetic velocity values. After relaxation times which are not the same and relative to different fabric samples, it may be concluded that bagging behavior remained function of the internal frictional stresses, especially yarn-to-yarn and metal-to-fabric ones.
Practical implications
– This study is interesting for denim consumers and industrial applications during long and repetitive uses. The paper has practical implications in the clothing appearance and other textile industry, especially in the weaving process when friction forms (yarn-to-yarn, yarn-to-metal frictions) and stresses are drastic. In fact, in terms of the importance to the industrial producers of the materials it helps to provide a first step in an attempt for a better understanding of the stresses involved in bagging of woven fabrics in general and denim fabrics particularly due to important frictional input contributions. They provide the basis for the development of fabrics that can withstand bagging problems. This research may also put forward improved methods of measuring bagginess as function of frictional parameters in order to optimize (minimize) their effects on the bagging behaviors before and after repetitive uses. These experimental, statistical and theoretical findings may be used to predict bagginess of fabrics based on their properties and prevent industrial from the most significant and influential inputs which should be adjusted accurately. This work allows industrial, also, to make more attention, in case of a high-quality level to ensure, to optimize and review yarn behaviors used to produce fabrics against drastic solicitations and minimize frictions forms during experimental spinning and weaving processes.
Originality/value
– Until now, there is no sufficient information to evaluate and predict the effect of the yarn-to-yarn friction as well as metal-to-yarn one on the residual bagging behavior. Besides, there is no work that deals with the kinetic recovery evolution as function of frictional inputs to explain accurately the bagging behavior evolution during relaxation time. Therefore, this present work is to investigate and model the residual bagging recovery velocity after bagging test as function of the frictional input parameters of both denim yarn and fabric samples (expressed by the friction caused due to contact from conformator to fabric).