A model has been developed to predict the wear groove geometry resulting from wear testing of Stellite 6 coatings on ferrous and nickel-based alloys produced by laser cladding with powers of 1 kW and 1.8 kW. Although the predictions of the model are close to the observed values, they differ in ways that can be accounted for by the incorrect assumption that only abrasive wear occurs. Abrasive wear is dominant, but there is also evidence that adhesive wear and plastic deformation occur and change the geometry and macrostructures of the wear tracks, particularly for the coatings on a Ni-based superalloy substrate. Significant differences were observed in wear track geometries and macrostructures for coatings on the substrates investigated and these differences correlate well with measured differences in the wear loss of the Stellite coatings.