Stellite 6 was fabricated by laser cladding on a 1050 steel (MS) substrate with laser powers of 1 kW (MS-1) and 1.8 kW (MS-1.8). The chemical compositions and microstructures of the coatings were analysed by X-Ray Fluoroscense, optical microscopy and scanning electron microscopy. The microhardness of the coatings was examined and the wear mechanism of the coatings was evaluated using a ball-on-plate wear testing machine. The results indicated less cracking and pore development for Stellite 6 coatings applied to the 1050 steel substrate with the lower laser power (MS-1). Moreover, the Stellite coating for MS-1 was significantly harder than that obtained for MS-1.8. The wear test results showed that the weight loss for MS-1 was much lower than for MS-1.8. The evaluations of dilution and calculation of carbon content indicated that MS-1 has lower dilution and higher coating C content than MS-1.8. It is concluded that the lower hardness of the coating for MS-1.8, substantially reduced the wear resistance of the Stellite 6 coating and the lower hardness of the coating for MS-1.8 was due to higher level of dilution and lower coating C content. The coating-substrate couple must be considered in assessing the likely performance of the coating under service conditions.
Stellite 6 was deposited by laser cladding of two different steel substrates (nickel superalloy and mild steel). The chemical compositions and microstructures of these coatings were characterized by atomic absorption spectroscopy, optical microscopy and scanning electron microscopy. The microhardness of the coatings was measured and the wear mechanism of the coatings was examined using a pin-on-plate (reciprocating) wear testing machine. The results showed less cracking and pore development for Stellite 6 coatings applied to the mild steel (MS) substrate. Further, the Stellite coating on mild steel was significantly harder than that deposited on the superalloy. The wear test results showed that the weight loss for the coating on mild steel was significantly lower than for the nickel superalloy substrate. It is concluded that the lower hardness of the coating on the nickel superalloy, together with the softer underlying substrate structure, markedly reduced the wear resistance of the Stellite 6 coating. Keywords:Laser cladding, Stellite 6 coating, friction and wear, nickel superalloy and mild steel. A B S T R A C TStellite 6 was deposited by laser cladding of two different steel substrates (nickel superalloy and mild steel). The chemical compositions and microstructures of these coatings were characterized by atomic absorption spectroscopy, optical microscopy and scanning electron microscopy. The microhardness of the coatings was measured and the wear mechanism of the coatings was examined using a pin-on-plate (reciprocating) wear testing machine. The results showed less cracking and pore development for Stellite 6 coatings applied to the mild steel (MS) substrate. Further, the Stellite coating on mild steel was significantly harder than that deposited on the superalloy. The wear test results showed that the weight loss for the coating on mild steel was significantly lower than for the nickel superalloy substrate. It is concluded that the lower hardness of the coating on the nickel superalloy, together with the softer underlying substrate structure, markedly reduced the wear resistance of the Stellite 6 coating
. (2015). Effect of heat input on Stellite 6 coatings on a medium carbon steel substrate by laser cladding. Materials Today: Proceedings, 2 (4-5), 1747-1754. Effect of heat input on Stellite 6 coatings on a medium carbon steel substrate by laser cladding AbstractStellite 6 was deposited by laser cladding on a medium carbon steel substrate (MS) with energy inputs of 1. kW (MS 1) and 1.8. kW (MS 1.8). The chemical compositions and microstructures of these coatings were characterized by atomic absorption spectroscopy, optical microscopy and scanning electron microscopy. The microhardness of the coatings was measured and the wear mechanism of the coatings was assessed using a pin-on-plate (reciprocating) wear testing machine. The results indicated less cracking and pore development for Stellite 6 coatings applied to the medium carbon steel substrate with the lower heat input (MS 1). Moreover, the Stellite coating for MS 1 was significantly harder than that obtained for MS 1.8. The wear test results indicated that the weight loss for MS 1 was much lower than for MS 1.8. It is concluded that the lower hardness of the coating for MS 1.8, markedly reduced the wear resistance of the Stellite 6 coating. Disciplines Engineering | Science and Technology Studies AbstractStellite 6 was deposited by laser cladding on a medium carbon steel substrate (MS) with energy inputs of 1 kW (MS 1) and 1.8 kW (MS 1.8). The chemical compositions and microstructures of these coatings were characterized by atomic absorption spectroscopy, optical microscopy and scanning electron microscopy. The microhardness of the coatings was measured and the wear mechanism of the coatings was assessed using a pin-on-plate (reciprocating) wear testing machine. The results indicated less cracking and pore development for Stellite 6 coatings applied to the medium carbon steel substrate with the lower heat input (MS 1). Moreover, the Stellite coating for MS 1 was significantly harder than that obtained for MS 1.8. The wear test results indicated that the weight loss for MS 1 was much lower than for MS 1.8. It is concluded that the lower hardness of the coating for MS 1.8, markedly reduced the wear resistance of the Stellite 6 coating.
Stellite 6 was deposited by laser cladding on a nickel superalloy substrate (NIS) with energy inputs of 1 kW (NIS 1) and 1.8 kW (NIS 1.8). The chemical compositions and microstructures of these coatings were characterized by atomic absorption spectroscopy, optical microscopy and scanning electron microscopy. The microhardness of the coatings was measured and the wear mechanism of the coatings was examined using a pin-on-plate (reciprocating) wear testing machine. The results showed less cracking and pore development for Stellite 6 coatings applied to the nickel superalloy substrate with the lower heat input (NIS 1). Further, the Stellite coating for NIS 1 was significantly harder than that obtained for NIS 1.8. The wear test results showed that the weight loss for NIS 1 was much lower than for NIS 1.8. It is concluded that the lower hardness of the coating for NIS 1.8, together with the softer underlying substrate structure, markedly reduced the wear resistance of the Stellite 6 coating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.