The Ministry of Energy and Mineral Resources of the Republic of Indonesia regularly assessed public satisfaction with its online licensing services. User rated their satisfaction at 3.42 on a scale of 4, below the organization's average of 3.53. Evaluating public service performance is crucial for quality improvement. Previous research relied solely on survey data to assess public satisfaction. This study goes further by analyzing user feedback in text form from an online licensing application to identify negative aspects of the service that need enhancement. The dataset spanned September 2019 to February 2023, with 24,112 entries. The choice of classification methods on the highest accuracy values among decision tree, random forest, naive bayes, stochastic gradient descent, logistic regression (LR), and k-nearest neighbor. The text data was converted into numerical form using CountVectorizer and term frequency-inverse document frequency (TF-IDF) techniques, along with unigrams and bigrams for dividing sentences into word segments. LR bigram CountVectorizer ranked highest with 89% for average precision, F1-score, and recall, compared to the other five classification methods. The sentiment analysis polarity level was 36.2% negative. Negative sentiment revealed expectations from the public to the ministry to improve the top three aspects: system, mechanism, and procedure; infrastructure and facilities; and service specification product types.