We have examined the effects of temperature on the equilibrium constant, Kobs, for Escherichia coli SSB tetramer binding to a series of single-stranded (ss) oligodeoxyribonucleotides, dT(pT)n, dC(pC)n, and dA(pA)n (n = 34, 55, and 69) in order to investigate the thermodynamic basis for the strong preference of E. coli SSB (and other SSB proteins) for binding polypyrimidine stretches of ss-DNA. In addition to the expected base-dependent differences in the magnitude of Kobs, we also observe qualitatively different temperature dependencies for the binding of the SSB tetramer to oligodeoxyadenylates. Linear van't Hoff plots are obtained for SSB tetramer binding to dT(pT)n and dC(pC)n, with delta H0obs ranging from -50 to -100 kcal/mol depending on the oligodeoxynucleotide length and salt concentration. In contrast, all van't Hoff plots for SSB tetramer binding to dA(pA)N are distinctly nonlinear with maxima in K(obs) occurring near 25 degrees C, indicative of an apparent large negative change in molar heat capacity (delta C0P,obs < 0). Thus for the SSB-dA(pA)n interaction, delta H0obs and delta S0obs are both highly temperature dependent, but compensate such that delta G0obs is relatively insensitive to temperature. These nonlinear nonlinear van't Hoff plots are not due to coupling of SSB assembly to dA(pA)n binding or to temperature-dependent shifts in the formation of other SSB-DNA binding modes. The nonlinear van't Hoff plots for SSB tetramer binding to dA(pA)n appear to result from the coupling of two processes: (1) the unstacking of the dA(pA)n bases (occurring with delta H0 > 0 and delta C0P = 0) and (2) the binding of SSB to the unstacked DNA (occurring with delta H0 < 0 and delta C0P = 0). Therefore, although each isolated equilibrium occurs with delta C0P approximately 0, the overall equilibrium displays an apparent delta C0P,obs < 0 due to the coupled equilibrium. The binding of SSB to dT(pT)n and dC(pC)n occurs with delta H0 < 0 and delta C0P,obs = 0, since the bases in these ss-DNA molecules do not stack appreciably. These results indicate that a nonspecific protein-DNA interaction can display a large negative apparent delta C0P; however, this effect appears not to be due to the hydrophobic effect, but rather to a temperature-dependent conformational transition in the DNA that is coupled to protein binding. Implications of these observations for other protein-nucleic acid systems are discussed.