In this study, we analyze the models of the deflection angle of a new Schwarzschild-like black hole and employ the optical metric of the black hole. To do so, we use the Gaussian curvature of the optical metric and the Gauss-Bonnet theorem, known as the Gibbons-Werner technique, to determine the deflection angle. Furthermore, we examine the deflection angle in the presence of the plasma medium and how the plasma medium affects the deflection angle. The deflection angle of the BH solution in the gauged super-gravity is computed using the Keeton-Petters approach. By utilizing the ray-tracing technique, we investigate the shadow of corresponding black hole and analyze the plots of the deflection angle as well as shadow to check the influence of the plasma and the algebraic thermodynamic parameters on the deflection angle and the shadow.