An electronegative collisional plasma having warm and massive positive ions, non-extensive distributed electrons and Boltzmann distributed negative ions is modelled for the plasma-surface interaction process that is used for the surface nitriding. Specifically the sheath formation is evaluated through the Bohm’s criterion, which is found to be modified, and the variation of the sheath thickness and profiles of the density of plasma species and the net space charge density in the sheath region in addition to the electric potential. The effect of ion temperature, non-extensivity and collisional parameter is examined in greater detail considering the collisional cross-section to obey power-law dependency on the positive ion velocity. The positive ions are found to enter in the sheath region at lower velocities in the collisional plasma compared to the case of collision-less plasma; this velocity sees minuscule reduction with increasing non-extensivity. The increasing ion temperature and collisional parameter lead to the formation of sheath with smaller thickness.