Plasmonic photothermal and photodynamic therapy (PPTT and PDT, respectively) are two cancer treatments that have the potential to be combined in a synergistic scheme. The aim of this study is to optimize the PPTT treatment part, in order to account for the PDT lack of coverage in the hypoxic tumor volume and in cancer areas laying in deep sites. For the needs of this study, a mouse was modeled, subjected to PDT and its necrotic area was estimated by using the MATLAB software. The same procedure was repeated for PPTT, using COMSOL Multiphysics. PPTT treatment parameters, namely laser power and irradiation time, were optimized in order to achieve the optimum therapeutic effect of the combined scheme. The PDT alone resulted in 54.8% tumor necrosis, covering the upper cancer layers. When the PPTT was also applied, the total necrosis percentage raised up to 99.3%, while all of the surrounding studied organs (skin, heart, lungs and trachea, ribs, liver and spleen) were spared. The optimized values of the PPTT parameters were 550 mW of laser power and 70 s of irradiation time. Hence, the PPTT–PDT combination shows great potential in achieving high levels of tumor necrosis while sparing the healthy tissues.