Purpose To evaluate the compression characteristics of the human lens nucleocortex in relation to its LOCSIII clinical grading. Methods Sixteen subjects undergoing planned extracapsular cataract surgery had pre-operative slit-lamp examination and assessment of cataract LOCSIII grade followed by postoperative in vitro evaluation of the nucleus with measurement of 'linear compressibility' by a purpose-designed caliper incorporating a strain gauge, enabling the derivation of a graph of nuclear compression (D (mm) against applied force (F (N)). Results Nuclear colour correlates with the force required to compress a lens to 75% of its original depth (F75) (R = 0.625, P = 0.017). Nuclear opalescence correlates with the force required to compress a lens to 75% of its original depth (R = 0.651, P = 0.012) and inversely with linear compressibility (⌬D/⌬F, the slope of the graph of nuclear compression against applied force) (R = ؊0.610, P = 0.014). F75 is a direct and linear compressibility is an inverse related parameter of lens nucleus 'hardness'. Conclusion A new instrument is described which allows measurement of 'hardness'-related compression characteristics of the human cataract in vitro. There is a relationship between the LOCSIII clinical classification of nuclear cataracts and mechanical compression characteristics of the cataractous lens. LOCSIII classification may aid the preoperative planning of an appropriate surgical approach to an individual cataract.