Exfoliation syndrome (XFS) is an age-related disease in which abnormal fibrillar extracellular material is produced and accumulates in many ocular tissues. Its ocular manifestations involve all of the structures of the anterior segment, as well as conjunctiva and orbital structures. Glaucoma occurs more commonly in eyes with XFS than in those without it; in fact, XFS has recently been recognized as the most common identifiable cause of glaucoma. Patients with XFS are also predisposed to develop angle-closure glaucoma, and glaucoma in XFS has a more serious clinical course and worse prognosis than primary open-angle glaucoma. There is increasing evidence for an etiological association of XFS with cataract formation, and possibly with retinal vein occlusion. XFS is now suspected to be a systemic disorder and has been associated preliminarily with transient ischemic attacks, stroke, systemic hypertension, and myocardial infarction. Further ramifications await discovery. Deposits of white material on the anterior lens surface are the most consistent and important diagnostic feature of XFS. The classic pattern consists of three distinct zones that become visible when the pupil is fully dilated. Whereas the classic picture of manifest XFS has been often described, the early stages of beginning exfoliation have not been well defined. Next to the lens, exfoliation material is most prominent at the pupillary border. Pigment loss from the iris sphincter region and its deposition on anterior chamber structures is a hallmark of XFS. Despite extensive research, the exact chemical composition of exfoliation material (XFM) remains unknown. An overproduction and abnormal metabolism of glycosaminoglycans have been suggested as one of the key changes in XFS. The protein components of XFM include both noncollagenous basement membrane components and epitopes of the elastic fiber system such as fibrillium. Regardless of etiology, typical exfoliation fibers have been demonstrated electron microscopically in close association with the pre-equatorial lens epithelium, the nonpigmented ciliary epithelium, the iris pigment epithelium, the corneal endothelium, the trabecular endothelium, and with almost all cell types of the iris stroma, such as fibrocytes, melanocytes, vascular endothelial cells, pericytes, and smooth muscle cells. The presence of XFS should alert the physician to the increased risks of intraocular surgery, most commonly zonular dehiscence, capsular rupture, and vitreous loss during cataract extraction. Heightened awareness of this condition and its associated clinical signs are important in the detection and management of glaucoma, and preoperative determination of those patients at increased risk for surgical complications.
Basement membranes are specialized extracellular matrices consisting of tissue-specific organizations of multiple matrix molecules and serve as structural barriers as well as substrates for cellular interactions. The network of collagen IV is thought to define the scaffold integrating other components such as, laminins, nidogens or perlecan, into highly organized supramolecular architectures. To analyze the functional roles of the major collagen IV isoform α1(IV)2α2(IV) for basement membrane assembly and embryonic development, we generated a null allele of the Col4a1/2 locus in mice, thereby ablating both α-chains. Unexpectedly, embryos developed up to E9.5 at the expected Mendelian ratio and showed a variable degree of growth retardation. Basement membrane proteins were deposited and assembled at expected sites in mutant embryos, indicating that this isoform is dispensable for matrix deposition and assembly during early development. However, lethality occurred between E10.5-E11.5, because of structural deficiencies in the basement membranes and finally by failure of the integrity of Reichert's membrane. These data demonstrate for the first time that collagen IV is fundamental for the maintenance of integrity and function of basement membranes under conditions of increasing mechanical demands, but dispensable for deposition and initial assembly of components. Taken together with other basement membrane protein knockouts, these data suggest that laminin is sufficient for basement membrane-like matrices during early development, but at later stages the specific composition of components including collagen IV defines integrity, stability and functionality.
Homozygous deletion of a 84-kb genomic fragment in human chromosome 1 that encompasses the CFHR1 and CFHR3 genes represents a risk factor for hemolytic uremic syndrome (HUS) but has a protective effect in age-related macular degeneration (AMD). Here we identify CFHR1 as a novel inhibitor of the complement pathway that blocks C5 convertase activity and interferes with C5b surface deposition and MAC formation. This activity is distinct from complement factor H, and apparently factor H and CFHR1 control complement activation in a sequential manner. As both proteins bind to the same or similar sites at the cellular surfaces, the gain of CFHR1 activity presumably is at the expense of CFH-mediated function (inhibition of the C3 convertase). In HUS, the absence of CFHR1 may result in reduced inhibition of terminal complex formation and in reduced protection of endothelial cells upon complement attack. These findings provide new insights into complement regulation on the cell surface and biosurfaces and likely define the role of CFHR1 in human diseases. IntroductionThe complement system is important for host innate and adaptive immunity and mounts a protective immune response to invading microbes. 1 The alternative complement pathway is spontaneously activated, and generates C3 convertases (C3bBb) that cleave the central component C3 to the anaphylactic peptide C3a and C3b. 2,3 C3b attached to a foreign surface binds factor B and generates the C3 convertase (C3bBb), which enhances further complement activation resulting in opsonization and phagocytosis of particles. Binding of an additional C3b molecule to the C3 convertase forms the C5 convertase (C3bBbC3b) of the alternative pathway. This convertase cleaves C5 and generates the potent chemoattractant C5a as well as C5b, which initiates the terminal complement pathway assembly. 4 C5b immediately undergoes conformational changes and binds C6 and C7 in a nonenzymatic manner. The assembled C5b67 complex is released from the convertase and attaches to lipid bilayers. Upon binding of C8 and C9, the lytic membrane attack complex (MAC) is formed. 3,5 Once activated, this powerful defense system is tightly controlled on host cell surfaces by both membrane-anchored and surface-attached soluble regulators. Proper and coordinated function of these regulators is essential for tissue integrity. Single gene mutations predispose to severe renal and retinal diseases, that is, hemolytic uremic syndrome (HUS; OMIM no. 235400), membranoproliferative glomerulonephritis type II (MPGN II; OMIM no. 609814), or age-related macular degeneration (AMD; OMIM no. 603075). 6,7 HUS is caused by occlusion of arterioles and capillaries in the kidney, due to endothelial cell and platelet damage. 8 MPGN II is a rare renal disease, with formation of dense deposits at the glomerular basement membrane and thickening of the peripheral capillary walls. 9 Similarly, the retinal disease AMD, which causes visual impairment of elderly people, is caused by deposits (drusen) that form on the Bruch membrane and le...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.