Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The decays $$ {\mathrm{B}}_{\mathrm{s}}^0 $$ B s 0 → J/ψπ+π−K+K− are studied using a data set corresponding to an integrated luminosity of 9 fb−1, collected with the LHCb detector in proton-proton collisions at centre-of-mass energies of 7, 8 and 13 TeV. The decays $$ {\mathrm{B}}_{\mathrm{s}}^0 $$ B s 0 → $$ \mathrm{J}/{\uppsi \mathrm{K}}^{\ast 0}{\overline{\mathrm{K}}}^{\ast 0} $$ J / ψK ∗ 0 K ¯ ∗ 0 and $$ {\mathrm{B}}_{\mathrm{s}}^0 $$ B s 0 → χc1(3872)K+K−, where the K+K−pair does not originate from a ϕ meson, are observed for the first time. Precise measurements of the ratios of branching fractions between intermediate χc1(3872)ϕ, $$ \mathrm{J}/{\uppsi \mathrm{K}}^{\ast 0}{\overline{\mathrm{K}}}^{\ast 0} $$ J / ψK ∗ 0 K ¯ ∗ 0 , ψ(2S)ϕ and χc1(3872)K+K− states are reported. A structure, denoted as X(4740), is observed in the J/ψϕ mass spectrum and, assuming a Breit-Wigner parameterisation, its mass and width are determined to be$$ {\displaystyle \begin{array}{c}{m}_{\mathrm{X}(4740)}=4741\pm 6\pm 6\kern0.5em \mathrm{MeV}/{c}^2,\\ {}{\Gamma}_{\mathrm{X}(4740)}=53\pm 15\pm 11\kern0.5em \mathrm{MeV},\end{array}} $$ m X 4740 = 4741 ± 6 ± 6 MeV / c 2 , Γ X 4740 = 53 ± 15 ± 11 MeV , where the first uncertainty is statistical and the second is systematic. In addition, the most precise single measurement of the mass of the $$ {\mathrm{B}}_{\mathrm{s}}^0 $$ B s 0 meson is performed and gives a value of$$ {m}_{{\mathrm{B}}_{\mathrm{s}}^0}=5366.98\pm 0.07\pm 0.13\kern0.5em \mathrm{MeV}/{c}^2. $$ m B s 0 = 5366.98 ± 0.07 ± 0.13 MeV / c 2 .
The decays $$ {\mathrm{B}}_{\mathrm{s}}^0 $$ B s 0 → J/ψπ+π−K+K− are studied using a data set corresponding to an integrated luminosity of 9 fb−1, collected with the LHCb detector in proton-proton collisions at centre-of-mass energies of 7, 8 and 13 TeV. The decays $$ {\mathrm{B}}_{\mathrm{s}}^0 $$ B s 0 → $$ \mathrm{J}/{\uppsi \mathrm{K}}^{\ast 0}{\overline{\mathrm{K}}}^{\ast 0} $$ J / ψK ∗ 0 K ¯ ∗ 0 and $$ {\mathrm{B}}_{\mathrm{s}}^0 $$ B s 0 → χc1(3872)K+K−, where the K+K−pair does not originate from a ϕ meson, are observed for the first time. Precise measurements of the ratios of branching fractions between intermediate χc1(3872)ϕ, $$ \mathrm{J}/{\uppsi \mathrm{K}}^{\ast 0}{\overline{\mathrm{K}}}^{\ast 0} $$ J / ψK ∗ 0 K ¯ ∗ 0 , ψ(2S)ϕ and χc1(3872)K+K− states are reported. A structure, denoted as X(4740), is observed in the J/ψϕ mass spectrum and, assuming a Breit-Wigner parameterisation, its mass and width are determined to be$$ {\displaystyle \begin{array}{c}{m}_{\mathrm{X}(4740)}=4741\pm 6\pm 6\kern0.5em \mathrm{MeV}/{c}^2,\\ {}{\Gamma}_{\mathrm{X}(4740)}=53\pm 15\pm 11\kern0.5em \mathrm{MeV},\end{array}} $$ m X 4740 = 4741 ± 6 ± 6 MeV / c 2 , Γ X 4740 = 53 ± 15 ± 11 MeV , where the first uncertainty is statistical and the second is systematic. In addition, the most precise single measurement of the mass of the $$ {\mathrm{B}}_{\mathrm{s}}^0 $$ B s 0 meson is performed and gives a value of$$ {m}_{{\mathrm{B}}_{\mathrm{s}}^0}=5366.98\pm 0.07\pm 0.13\kern0.5em \mathrm{MeV}/{c}^2. $$ m B s 0 = 5366.98 ± 0.07 ± 0.13 MeV / c 2 .
The production cross-section of the χc1(3872) state relative to the ψ(2S) meson is measured using proton-proton collision data collected with the LHCb experiment at centre-of-mass energies of $$ \sqrt{s} $$ s = 8 and 13 TeV, corresponding to integrated luminosities of 2.0 and 5.4 fb−1, respectively. The two mesons are reconstructed in the J/ψπ+π− final state. The ratios of the prompt and nonprompt χc1(3872) to ψ(2S) production cross-sections are measured as a function of transverse momentum, pT, and rapidity, y, of the χc1(3872) and ψ(2S) states, in the kinematic range 4 < pT< 20 GeV/c and 2.0 < y < 4.5. The prompt ratio is found to increase with pT, independently of y. For the prompt component, the double ratio of the χc1(3872) and ψ(2S) production cross-sections between 13 and 8 TeV is observed to be consistent with unity, independent of pT and centre-of-mass energy.
The thermal corrections to the propagator of a loosely bound charm-meson molecule in a pion gas are calculated to next-to-leading order in the heavy-meson expansion using a zero-range effective field theory. Ultraviolet divergences in the charm-meson-pair self energy are canceled by corrections to the charm-meson-pair contact vertex. Terms that are singular at the charm-meson-pair threshold can be absorbed into thermal corrections to the rest energies and kinetic masses of the charm-meson constituents. The remaining terms reduce to a thermal correction to the binding momentum that is proportional to the pion number density and suppressed by the pion/charm-meson mass ratio. The correction gives a tiny decrease in the binding energy of the charm-meson molecule relative to the charm-meson-pair threshold in the pion gas and a change in its thermal width that is small compared to the thermal widths of the charm-meson constituents. These results are encouraging for the prospects of observing X(3872) and $$ {T}_{cc}^{+}(3875) $$ T cc + 3875 in the expanding hadron gas produced by heavy-ion collisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.