The load-displacement curves of six types of roof-to-wall connection joints were obtained through uplift experiments, while the mechanical properties of each type of joint were compared and analyzed, and the applicability of each joint was verified by the Foschi load-displacement curve model simulation. The specimens were made of three kinds of wood (Pinus sylvestris (PS), Spruce-Pine-Fir (SPF), and Douglas fir (DF)) and two different metal connectors (A-type and B-type), and then the monotonic pullout tests were conducted on each specimen. The failure modes of each group of specimens were analyzed, and the characteristic values analysis method was used to analyze and compare the characteristic values of the load-displacement curves of each specimen, including six characteristic values: maximum load, yield load, deformation capacity, energy dissipation capacity, ductility ratio, and initial stiffness. The results showed that the load capacity of TA group (specimens with A-type metal connectors) was much greater than that of TB group (specimens with B-type metal connectors). The specimens made of DF had the best mechanical performance, but the specimens of DF group were prone to brittle failure. Finally, the fitting parameters of the Foschi model applicable to such joints were obtained.