Reflection cracks are one of the most common problems in semi-rigid base pavement. Setting a stress absorption layer can effectively delay the occurrence of reflection cracks, but further improvement is still needed in its interlayer bonding performance and anti-reflection crack performance. Considering the excellent crack resistance of basalt fibers and the good elastic recovery ability of rubber asphalt, it is considered worthwhile to incorporate them into traditional stress absorption layers to improve performance. To simulate the actual pavement layer effect, composite specimens consisting of a cement-stabilized macadam base + basalt fiber rubber asphalt stress-absorbing layer + AC-20 asphalt mixture surface layer were prepared to evaluate their performance through interlayer direct shear tests, interlayer tensile tests, three-point bending tests, and overlay tests (OTs). To determine the optimal fiber blending combination, four fiber lengths (3 cm, 6 cm, 9 cm, 12 cm) and four fiber proportions (120 g/m2, 140 g/m2, 160 g/m2, 180 g/m2) were selected respectively. The specific effects of basalt fibers with different lengths and dosages were analyzed. The results show that compared with the absence of fibers, the improvement of interlayer bonding performance of rubber asphalt with basalt fibers is not significant, and it has certain limitations; however, the improvement of anti-reflective crack performance is significant, with an increase of up to 305.5%. This indicates that the network structure formed by basalt fibers and rubber asphalt stress absorption layer can effectively absorb and disperse external loads, causing an excellent crack resistance effect. Meanwhile, the results indicate that the main factor affecting its interlayer bonding strength and anti-reflective crack performance is the fiber content. Based on the comprehensive analysis of the performance and economy of the stress absorption layer of basalt fiber rubber asphalt, the optimal fiber parameter combination recommended is as fiber length 9 cm and fiber content 160 g/m2.These results can provide a reference for the design and performance evaluation of basalt fiber rubber asphalt stress absorption layer, and have certain application value.