So far, much effort has been made to understand evolution and life phenomena. However, the more we know, the more new puzzles appear. This article introduces some new approaches to understanding what drives evolution. Organism evolution has been examined using artificial neural networks and a semihomologous approach based on the sequences of cytochrome c. To realize this task, three and four-layer neural networks have been designed and then taught. It has been shown that the four-layer neural network more clearly recognizes evolutionary similarities, usually indicating greater (comparing to the three-layer network) similarities to the organisms that were used to train the neural networks. It has been noted that unified cell bioenergetics allows describing the manner in which the main engine that drives evolution works. Reasons for some diseases have been also interpreted to present considerations in a broader and more holistic view. The presented results point out that the evolution of organisms can be considered as a discontinuous process taking place mainly in genome attractors that define and stabilize organisms.