In June 2013, a field experiment was conducted in Southeast Tibet in which the air temperature, moisture, and wind were measured by using a GPS sounding system. In the present study, based on these observations and ERA-Interim reanalysis data, the vertical structures of these atmospheric properties and the possible influence of the South Asian summer monsoon (SASM) were investigated. On average, the temperature had a lapse rate of 6.8℃ km −1 below the tropopause of 18.0 km. A strong moisture inversion occurred at the near-surface, with a strength of 1.7 g kg −1 (100 m) −1 for specific humidity. During the observation period, the SASM experienced a south phase and a north phase in the middle and by the end of June, respectively. The monsoon's evolution led to large changes in convection and circulation over Southeast Tibet, which further affected the local thermal, moisture, and circulation conditions. The strong convection resulted in an elevated tropopause height over Southeast Tibet during the north phase of the SASM, and the large-scale warm and wet air masses delivered by the monsoon caused high local temperature and moisture conditions.