The ‘subsurface disposal’ concept has been proposed for relatively higher-activity low-level waste (LLW) in Japan. This concept includes a low-permeability layer (LPL) made of bentonite material and a low-diffusion layer (LDL) made of dense cementitious material. The influence of gas generation and migration on the mechanical stability of the engineered barrier system (EBS) is one of the issues for long-term performance assessment of the disposal facility. In this study, coupled hydromechanical modelling and analyses are carried out in order to evaluate the mechanical stability of the system. Two gas generation rate cases are simulated: (1) a reference case; and (2) a conservative case. It is found from the analyses that the tensile stress developed in the cementitious components due to accumulated gas pressure is lower than the tensile strength of the materials, and that stress developed in the LPL remains compressive apart from at the interface between the LPL and the LDL, which suggests that opening could occur at the interface. These results indicate that the gas pressure would not mechanically damage the EBS of the subsurface disposal even if a relatively high gas generation rate were assumed.