The ‘subsurface disposal’ concept has been proposed for relatively higher-activity low-level waste (LLW) in Japan. This concept includes a low-permeability layer (LPL) made of bentonite material and a low-diffusion layer (LDL) made of dense cementitious material. The influence of gas generation and migration on the mechanical stability of the engineered barrier system (EBS) is one of the issues for long-term performance assessment of the disposal facility. In this study, coupled hydromechanical modelling and analyses are carried out in order to evaluate the mechanical stability of the system. Two gas generation rate cases are simulated: (1) a reference case; and (2) a conservative case. It is found from the analyses that the tensile stress developed in the cementitious components due to accumulated gas pressure is lower than the tensile strength of the materials, and that stress developed in the LPL remains compressive apart from at the interface between the LPL and the LDL, which suggests that opening could occur at the interface. These results indicate that the gas pressure would not mechanically damage the EBS of the subsurface disposal even if a relatively high gas generation rate were assumed.
In Japan, some radioactive waste with a relatively higher radioactivity concentration from nuclear facilities is to be packaged in rectangle steel containers and disposed of in subsurface disposal facilities, where normal human intrusion rarely occurs. After the closure of a facility, its pore is saturated with groundwater. If the dissolved oxygen of the pore water is consumed by steel corrosion, hydrogen gas will be generated from the metallic waste, steel containers, and reinforcing bars of concrete mainly by anaerobic corrosion. If the generated gas accumulates and the gas pressure increases excessively in the facility, the facility’s barrier performance might be degraded by mechanical influences such as crack formation in cementitious material or deformation of bentonite material. Firstly, in this study, we assessed the time evolution of the gas pressure and the water saturation in a sub-surface disposal facility by using a multi-phase flow numerical analysis code, GETFLOWS, in which a pathway dilation model is introduced and modified in order to reproduce the gas migration mechanism through the highly compacted bentonite. Next, we calculated the stress applied to the engineered barriers of the facility from the results of the time evolution of the pressure and the saturation. Then, we conducted a mechanical stability analysis of the engineered barriers by using a nonlinear finite element code, ABAQUS, in order to evaluate their performances after the closure of the facility.
In Japan, some of the radioactive waste with a relatively higher radioactivity concentration from nuclear facilities is to be packaged in rectangle steel containers and disposed of in sub-surface disposal facilities, where normal human intrusion is unlikely to occur. If dissolved oxygen in pore water is consumed by steel corrosion after the closure of the facility, hydrogen gas will be generated from the metallic waste, steel containers and concrete reinforcing bars largely by anaerobic corrosion. If the generated gas accumulates and the gas pressure increases excessively in the facility, the facility’s barrier performance might be degraded by mechanical influences such as fracturing of surrounding rock and cementitious materials or plastic deformation of the bentonite buffer. In this study laboratory experiments for gas and water transport properties of the rock were performed to evaluate gas flow through the rock mass (pumice tuff) around a facility for low level waste disposal. Based on the experimental results two-phase flow properties were evaluated by means of an inverse analysis method. The pumice tuff was subjected to hydraulic conductivity tests, water retention (moisture characteristic) tests, and gas injection tests. Non-linear properties such as relative permeability and water retention curve and hydraulic conductivity as a function of confined stress obtained from these tests are discussed. It was possible to estimate the intrinsic permeability, the relative permeability for gas and water and the water retention curve by applying an inverse analysis method using the multi-phase flow analysis code GETFLOWS and universal sensitivity analysis code UCODE_2005 to the gas injection tests. It was found from this study that gas flow in the pumice tuff is reasonably well described by classical two-phase flow concepts and that the two-phase flow properties can be applied to performance assessment of the facility with regard to the influence of gas generation and migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.