In this work, the ethylene-propylene-diene monomer/polypropylene (EPDM/PP) thermoplastic elastomer filled with intumescent flame retardants (IFR) is fabricated by melting blend. The IFR are constituted with melamine phosphate-pentaerythritol (MP/PER) by compounding and reactive extruding, respectively. The effects of two kinds of MP/PER with different contents on the thermal stability, flame retardancy, and mechanical properties of materials are investigated by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL-94, cone calorimeter test (CCT), and scanning electron microscopy (SEM). FTIR results show that the reactive extruded MP/PER partly generates melamine pyrophosphate (MPP) compared with compound masterbatches. TGA data indicate that the best thermal stability is achieved when the molar ratio of MP/PER reaches 1.8. All the reactive samples show a higher flame retardancy than compound ones. The CCT results also exhibit the same trend as above in heat release and smoke production rate. The EPDM/PP composites filled with 30 and 35% reactive MP/PER exhibit the improved flame retardancy but become stiffer and more brittle. SEM photos display that better dispersion and smaller particle size are obtained for reactive samples.