In this work, the thermal resistance of multilayered fabric ensembles meant for cold weather conditions were studied under different compressional loads. An instrument has been developed to study the thermal resistance of fabrics under different compressional loads. The instrument consists of a test plate, guard plates and a bottom plate. The test plate and guard plates were assembled together as a single entity, which can be moved up and down with a screw shaft. A load cell was connected to the plate assembly to apply the required compressional load on the fabric specimen. Thermal resistance of multilayered fabrics was studied in the developed instrument under different loading conditions. Single-jersey knitted fabric, needle punched fabric and polytetraflouroethylene (PTFE) coated fabrics were used in the inner, middle and outer layer, respectively. Twenty different multilayered fabric ensembles with the same inner and outer layers were studied. The middle layers, i.e. needle punched nonwoven fabrics, were produced from polyester hollow fibres, with varying linear density of fibre, mass per unit area and punch density. The thermal resistance of multilayered fabrics obtained from the developed instrument was compared with the thermal resistance of instruments, namely sweating guarded hot plate (SGHP) and Alambeta. Regression equations were developed and the contour plots were drawn to analyse the effect of the fibre, fabric and process parameters. ANOVAs were conducted to find the significance of the compressional load, linear density of fibre, mass per unit area and punch density on the thermal resistance of fabrics. It was found that the thermal resistance obtained from the instrument follows the same trend as that of thermal resistance obtained from SGHP and Alambeta. Mass per unit area was found to have significant effect on the thermal resistance of multilayered fabrics under different compressional loads. The effect of punch density decreases with the increase in compressional load on the thermal resistance of multilayered fabrics. The thermal conductivity of multilayered fabrics was observed to increase with the increase in the compressional load.