.The need for imaging and detecting in various instrument areas has brought light detection and ranging (LiDAR) to the forefront of consumer technology. Among different LiDAR, microelectromechanical system (MEMS) LiDAR has more appeal due to its small size and high integration. However, due to its low resolution and slight scanning angle, MEMS LiDAR does not apply to all scenes. Thus we presented a 360-deg scanning LiDAR emission optical system. Design formulas were deduced from theoretical formulas. In this system, the aspheric lens collimated the beam, MEMS micromirrors tracked the concentric circular beams, and the converging lens compensated for the divergence of the outgoing beam. By doing so, the target was scanned 360 deg at high resolution. With Zemax, the fast-axis divergence angle was 0.2484 mrad, the slow-axis divergence angle was 0.1546 mrad, and the system energy utilization rate was 84.16% with an angular resolution of 0.0142 deg at a distance of 10,000 mm. We have provided a potential solution for improving the scanning angle and resolution of MEMS LiDAR.