Damping circuits are installed inside the converter valve to limit commutation overshoots. They have significant effects on the valve’s turn-off performances, which should be carefully considered in parameter design. First, the calculation models for the turn-off process are discussed, including the conventional low frequency model and the broadband model. Then, it is found that high-frequency equipment parameters have significant effects on the transient valve voltage, which means that the conventional analytical methods based on low-frequency models is not suitable for damping circuit parameter design. The relationships between the turn-off performances and damping circuit parameters have also been analyzed in detail with the broadband model. To achieve better economic efficiency, this paper proposes a novel method for damping circuit parameter optimization, which combines the electromagnetic transient (EMT) calculation and the numerical optimization. Last, the case study is carried out based on a practical ±1100 kV ultra-high-voltage direct-current (UHVDC) transmission project, which proves the reliability and flexibility of the proposed method.