In this study, a hybrid high-voltage direct current (HVDC) topology with line commutated converter (LCC) and modular multilevel converter (MMC) in series-connection is proposed, which is suitable for bulk power overhead line transmission. This topology is of operational flexibility in terms of active and reactive power controls, and is able to withstand ac and dc faults by the cooperative control of LCC and MMC. First, the operation principle and mathematical model are presented. Then, the control strategies for ac faults at rectifier and inverter side are discussed, which can prevent current cutoff under ac fault at rectifier side as well as maintain part of active power if commutation failure of LCC occurs under ac fault at inverter side. In addition, the feasibility on dealing with dc fault is theoretically demonstrated by analysing the characteristic of MMC under blocking state. A detailed control strategy for dc fault is further proposed combined with a test system. Finally, the effectiveness of the control strategy for ac and dc faults is verified and further compared with LCC-based HVDC topology through time-domain simulation.
Colorectal cancer (CRC) remains one of the most common cancers worldwide. Increasing evidence indicates that SPRY4 intronic transcript 1 (SPRY4-IT1) regulate cell growth, differentiation, apoptosis, and cancer progression. However, the expression and function of SPRY4-IT1 in the progression of CRC remains largely unknown. Here, we reported that SPRY4-IT1 was upregulated in CRC. Increased SPRY4-IT1 expression in CRC was associated with larger tumor size and higher clinical stage. In vitro experiments revealed that SPRY4-IT1 knockdown significantly inhibited CRC cell proliferation by causing G1 arrest and promoting apoptosis, whereas SPRY4-IT1 overexpression promoted cell proliferation. Further functional assays indicated that SPRY4-IT1 overexpression significantly promoted cell migration and invasion by regulate the epithelial-mesenchymal transition (EMT). Taken together, our study demonstrates that SPRY4-IT1 could act as a functional oncogene in CRC, as well as a potential therapeutic target to inhibit CRC metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.