Forest fire regimes are changing as a function of increasing global weather extremes, socioeconomic development, and land use change. It is appropriate to use long-term time series satellite observations to better understand forest fire regimes. However, many studies that have analyzed the spatiotemporal characteristics of forest fires based on fire frequency have been inadequate. In this study, a set of metrics was derived from the VIIRS active fire data in China, from 2012 to 2021, through spatial extraction, spatiotemporal clustering, and spread reconstruction to obtain the frequency of forest fire spots (FFS), the frequency of forest fire events (FFE), the frequency of large forest fire events (LFFE), duration, burned area, and spread rate; these metrics were compared to explore the characteristics of forest fires at different spatiotemporal scales. The experimental results include 72.41 × 104 forest fire spots, 7728 forest fire events, 1118 large forest fire events, and a burned area of 58.4 × 104 ha. Forest fires present a significant spatiotemporal aggregation, with the most FFS and FFE in the Southern Region and the most severe LFFE and burned area in the Southwest Region. The FFS, FFE, and LFFE show a general decreasing trend on an annual scale, with occasional minor rebounds. However, the burned area had substantial rebounds in 2020. The high incidence of forest fires was concentrated from March to May. Additionally, 74.7% of the forest fire events had a duration of less than 5 days, while 25.3% of the forest fire events lasted more than 5 days. This helps us to understand the characteristics of more serious or higher risk forest fires. This study can provide more perspectives for exploring the characteristics of forest fires, and more data underpinning for forest fire prevention and management. This will contribute towards reasonable forest protection policies and a sustainable environment.