To further understand the problems of coal combustion and coalfield fire reignition, this paper researched the reaction characteristics of coal pyrolysis and low oxygen combustion and the reburning oxidation characteristics of residual structure by thermal analysis methods. The results show that temperature promotes both pyrolysis and low oxygen combustion reactions, but low oxygen combustion reaction is more sensitive to temperature changes. As the constant temperature rises, the mass reduction rate of low oxygen combustion of coal samples reaches 80% on average, which is 4 times that of pyrolysis, and the variations of thermogravimetric parameters are also significantly higher than those of pyrolysis. However, the higher the pyrolysis degree of the residues, the stronger their oxidizability, which greatly enhances the intensity and concentration of the secondary combustion, and the mass of residues is reduced by 90% on average. Conversely, because the combustible components are continuously consumed during low oxygen combustion, the reburning characteristics of residues become less obvious. For instance, the weight loss rate slows down, the burning becomes dispersed, and the burning intensity is weakened. In addition, the heat release is reduced from 8662 to 444.5 J/g, and the change trend is just opposite to that of pyrolysis. The above results show that as the constant temperature rises, the pyrolysis reaction greatly shortens the reburning process, while the low oxygen combustion reaction largely inhibits the reburning.