A novel three-dimensional isolation system consisting of thick rubber bearing (TNRB), disc spring bearing (DSB), and laminated rubber bearing (LRB) in series combination was designed, and its composition, principle, and isolation effect were comprehensively analyzed. By combining numerical examples, the whole structure method is used to compare and analyze the dynamic characteristics, dynamic response, and structural damage of large-span isolation structures containing new three-dimensional systems, large-span horizontal isolation structures based on LRB, and corresponding non-isolation structures under multi-dimensional seismic excitation. The results show that compared with the horizontal isolation structure based on LRB, the structure of the new three-dimensional isolation system has a 33% longer vertical natural vibration period, a 17.85% attenuation in the overall damage index, and a 36.86% increase in vertical energy dissipation capacity. It can achieve good isolation effects in both horizontal and vertical directions, which can form a favorable complement to the horizontal isolation structure based on LRB in terms of vertical isolation and energy dissipation.