Development of efficient and low-cost methods for the production of cobalt and cobalt oxide nanoparticles is of great interest. Such nanoparticles are typically prepared via transformation of precursors under controlled conditions. In the case of organic precursors, the production of said nanoparticles takes place through thermal decomposition of the organic moiety. The decomposition pathway of the precursor is greatly dependent on the type (i.e. inert, reducing or oxidizing) of the gaseous atmosphere prevailing during heating, as well as on the heating schedule itself. The characteristics of the organic group have also an important influence on the structure of the final material. The goal of the current work is to present a comprehensive review of the research work focusing on the synthesis of cobalt-based nanomaterials from activation of organic precursors.