Abstract
Acrylonitrile-butadienestyrene (ABS)/poly(methylmethacrylate) (PMMA)/ethylene methacrylate (EMA) composites were prepared with different blending sequences. All ABS/PMMA/EMA copolymers were designed to achieve the same total chemical composition, in which ABS/PMMA was equal to 80/20 and EMA was fixed at 6 wt%. The effects of different blending sequences on the mechanical and optical properties of ABS/PMMA/EMA blends were investigated. Results indicated that the tensile strengths of ABS/PMMA/EMA blends with different blending sequences were slightly affected, whereas the Izod impact strength of blends significantly varied. The impact toughness of the blends, in which PMMA/EMA was initially blended and then combined with ABS, was approximately twice that of the other blends. This blending sequence also had surface glossiness that was superior to those of the other blends. Differential scanning calorimetry and scanning electron microscopy further revealed that blending sequence influenced the phase miscibility and dispersion of the blends, which led to different mechanical and optical properties.