Vehicle steering control is crucial to autonomous vehicles. However, unknown parameters and uncertainties of vehicle steering systems bring a great challenge to its control performance, which needs to be tackled urgently. Therefore, this paper proposes a novel model free controller based on reinforcement learning for active steering system with unknown parameters. The model of the active steering system and the Brushless Direct Current (BLDC) motor is built to construct a virtual object in simulations. The agent based on Deep Deterministic Policy Gradient (DDPG) algorithm is built, including actor network and critic network. The rewards from environment are designed to improve the effectiveness of agent. Simulations and testbench experiments are implemented to train the agent and verify the effectiveness of the controller. Results show that the proposed algorithm can acquire the network parameters and achieve effective control performance without any prior knowledges or models. The proposed agent can adapt to different vehicles or active steering systems easily and effectively with only retraining of the network parameters.