On the basis of reviewing the existing research status of cumulative damage of the rock mass and summarizing the existing engineering application fields of radon, this paper attempts to apply radon detection technology to the research field of rock damage mechanics so as to monitor the evolution process of cumulative damage of the rock mass. Based on the above research purposes, a test device for detecting cumulative damage of radioactive rocks by surface radon gas was designed, and the test results were obtained by integrating the system to implement the test scheme. Due to the limitation of the nonmetallic ultrasonic detector, a single blasting damage value of 25 detection points appears after a single blasting measurement, which is a surface longitudinal wave velocity characterization damage set, while the surface radon exhalation rate in the subsequent analysis process is an overall characterization value; that is, the existence of damage directly affects the whole body radon exhalation rate of the test block, and the data dimensions of the two are different. In order to solve this problem, we try to introduce three data evaluation methods, the average weighting method, grey prediction method, and K-means clustering algorithm, and compare the feasibility of these three methods. It is proved that there is a certain linear relationship between the radon exhalation rate and the cumulative damage, which further verifies the feasibility of using radon to detect cumulative damage. The results show that the cumulative damage of loaded radioactive rock test blocks can be reflected by surface radon detection technology, and finally, the correlation between the cumulative damage characteristics and the continuous change of the body radon exhalation rate is obtained. Based on the correlation, the body radon exhalation rate is introduced into the field of fractured rock mass damage characterization, which is mutually improved with common monitoring methods such as acoustic emission and microseismic monitoring, supplementing and enriching the means of rock mass damage evolution characterization, providing a theoretical basis for finely describing the whole process of fracture closure and initiation, and finally accurately ensuring the stability of surrounding rock under the action of deep underground engineering excavation disturbance.