A fragment of Staphylococcus epidermidis lipase gene (Lys-303 to Lys-688) was inserted into plasmid pET-20b(+). The resulting C-terminal His-tagged recombinant protein (43 kDa) was overexpressed in Escherichia coli BL21(DE3) as a highly active lipase and was purified with nickel-coupled resin. Putative catalytic sites were determined by site-directed mutagenesis. Mutant enzymes (S418C and H648K) lost enzyme activities, which strongly suggests that the proposed residues of Ser-418 and His-648 are involved in catalysis. Site-directed mutagenesis showed that in comparison with wild-type enzyme, the M419A and V649I enzymes showed a 2.0-and 4.0-fold increase in the k cat /K m , respectively, but the M419l, M419Q, V649A, and V649L variants lost enzyme activities. The wildtype enzyme and the V649I mutant favored the hydrolysis of pnitrophenyl esters of butyrate, but the M419A favored decanoate. The results suggested that the amino acid residues (Met-419 and Val-649), following the catalytic triad, could affect the substrate specificity and/or catalytic efficiency.