Fusion welding causes joint deterioration when joining aluminum alloys, which limits the use of aluminum alloy components in high-end equipment. This paper focuses on an overview of how to achieve high-strength aluminum alloy welded joints using welding/plastic deformation composite forming technology. The current technology is summarized into two categories: plastic deformation welding and plastic deformation strengthening. Plastic deformation welding includes friction stir welding, friction welding, diffusion welding, superplastic solid-state welding, explosive welding, and electromagnetic pulse welding. Plastic deformation strengthening refers to the application of plastic deformation to the weld seam or heat-affected zone, or even the whole joint, after welding or during welding, including physical surface modification and large-scale plastic deformation technology. Important processing parameters of plastic deformation welding and their effects on weld quality are discussed, and the microstructure is described. The effect of plastic deformation strengthening technology on the microstructure and performance evolution, including the hardness, tensile strength, fatigue property, residual stress, and hot cracking of aluminum alloy welded joints, and its evolution mechanism are systematically analyzed. Finally, this paper discusses the future development of plastic deformation strengthening technology and anticipates growing interest in this research area.