The urban heat island (UHI) effect is created by a series of man-made surface modifications in urban areas that cause changes to the surface energy balance, resulting in higher urban surface air temperatures as compared with surrounding rural areas. Studying the UHI effect is highly amenable to hands-on undergraduate student research projects, because, among other reasons, there are low key measurement tools that allow accurate and regular stationary and mobile probing of air temperature. Here, we summarize the results of a student project at Texas A&M University that analyzed the atmospheric UHI of Bryan/College Station, a mid-size metro area in east Texas. Sling psychrometers were used for semi-regular twice daily stationary air temperature monitoring, and a low-cost electronic sensor and miniature data logger were used for mobile measurements. Stationary data from two similar, open mid-rise building locations showed typical UHI intensities of 0-2°C, while the mobile measurements identified situations with UHI intensities exceeding 6°C when traversing areas with high impervious surface fractions. Nighttime measurements showed the expected UHI intensity relations to wind speed and atmospheric pressure, while daytime data were more strongly related to urban morphology. The success of this research may encourage similar student projects that deliver baseline data to urban communities seeking to mitigate the UHI.