High enthalpy stagnation gas can be converted into hypervelocity flow through the contraction—expansion nozzle. The enthalpy flow in the nozzle can be divided into three regions: an equilibrium region, a non-equilibrium region, and a frozen region. The stagnation gas with a total enthalpy of 13.4 MJ/kg is used to analyze the thermochemical non-equilibrium effects. At the selected conditions, the effects of a conical nozzle under different expansion angles of the expansion section, curvature radius of the throat, throat radius, and convergence angle of the convergent section are investigated. Based on the Spalart–Allmaras one-equation turbulence model with the Catris–Aupiox compressibility correction, a multi-block solver for axisymmetric compressible Navier–Stokes equations is applied to simulate the thermochemical non-equilibrium flow in several high enthalpy conical nozzles. The multi-species two-temperature equation is employed in the calculation. The results reveal three interesting characteristics: Firstly, the thermochemical non-equilibrium effects are sensitive to the maximum expansion angle and throat radius but not to the radius of throat curvature and contraction angle. Secondly, as the maximum expansion angle decreases and the throat radius increases, the flow approaches equilibrium state. When the maximum expansion angle decreases from 12° to 4°, the freezing temperature decreases from 2623 K to 2018 K. When the throat diameter increased from 10 mm to 30 mm, the freezing temperature decreased from 2442 K to 2140 K. Finally, the maximum expansion angle and throat radius not only affect the position of the freezing point but also the flow field parameters, such as temperature, Mach number, and species mass fraction.