Abstract. In this study, it was investigated whether a NO signaling pathway is involved in the anti-epileptic effect of curcumin on pentylenetetrazol (PTZ)-kindled rats. PTZ-kindled rats received different doses of curcumin that were administered intraperitoneally for 24 days. Either a non-selective inhibitor of nitric oxide synthase (NOS) (N-nitro-L-arginine methyl ester (L-NAME)), a selective inhibitor of neuronal NOS (7-Nitroindazole (7-NI)), a selective inhibitor of inducible NOS (aminoguanidine (AG)), or a NO precursor (L-arginine (L-ARG)) was administered chronically to evaluate the role of NO in curcumin's anti-seizure effect. A chronic administration of curcumin (200 mg/kg) was most effective for decreasing the mean frequency of epileptiform discharge. Furthermore, a pretreatment with L-NAME or 7-NI augmented the anti-epileptic effect of curcumin. In contrast, AG failed to significantly alter the anti-epileptic effect of curcumin. A pretreatment with L-ARG temporally reversed the anti-epileptic effect of curcumin in the early stage, but in the late stage, it potentiated curcumin's anti-epileptic effect. These findings suggest that the L-arginine-nitric oxide pathway may be involved in the anti-epileptic properties of curcumin, and that the role of nNOS (and not iNOS) is prominent in this neuroprotective feature.